
FOR PUBLICATION 1

Implementing a Fast Lucas-Lehmer Test on
Programmable Graphics Hardware

Andrew Thall, Alma College

Abstract— The Lucas-Lehmer test provides a deterministic
algorithm for testing whether, for a prime number p, Mp = 2p−1
is also a prime number. The current work demonstrates that
this test can be effectively implemented on a parallel graphics
processing unit (GPU). The parallelization was achieved by two
main parallel methods: (1) fast multiplication using parallel Fast
Fourier transforms in extended precision; (2) fast parallel carry-
addition for arbitrary-precision numbers. Extended-precision is
necessary in the Fourier transforms to allow single-precision
graphics hardware to achieve sufficient precision for tests on
non-trivial values of Mp. Methods (1) and (2) allow data to to
remain on the graphics card throughout the test and minimize
runtime costs of bus traffic between the host and GPU. The
algorithm has been implemented in the Cg language and tested
on several hardware platforms. The current work demonstrates
the viability of current and future GPUs for number theoretic
computation.

[Addenda (2009): While actual implementations of this were
not competitive with highly optimized sequential algorithms
such as those used by GIMPS, a similar implementation using
modern double-precision GPU hardware and CUDA kernels,
rather than Cg-shaders, might produce superior runtimes to
sequential algorithms.]

Index Terms— Parallel Lucas-Lehmer test, Mersenne primes,
extended-precision computation, graphics processing units,
GPGPU, Fast Fourier Transform, parallel carry-propagation in
software

Manuscript date: August 14, 2007

I. INTRODUCTION

MERSENNE primes are prime-valued binary repunit
numbers—primes of the form

Mp = 2p − 1

= 1111 . . . 11112︸ ︷︷ ︸
p

for prime p. While of interest to number theorists, Mersenne
primes are also popular targets for computational benchmarking,
and are consistently the largest known prime numbers, due to
the availability of the efficient Lucas-Lehmer test (Alg. 1). The
current largest known prime is M32,582,657, discovered by GIMPS
(Great Internet Mersenne Prime Search) participants Cooper and
Boone [1]. The Lucas-Lehmer test is simple to implement algo-
rithmically but requires numerically intense computation, needing
O(p2 log p log log p) sequential operations to test a p-bit number
when using FFT-based multiplication.

This paper describes a GPU-based vector-parallel implementa-
tion of the Lucas-Lehmer test, depending for speed on computing
not only the FFT-squarings but the carry-adds, subtractions,
and modular reductions on the GPU. The use of the discrete
Fourier transform (DFT) for fast multiplication was described

Algorithm 1 The Lucas-Lehmer Test

Require: p > 2, a prime number for which Mp , 2p − 1 is the
Mersenne number to be tested

1: procedure LUCAS-LEHMER-TEST(p)
2: s0 ← 4 . Initialize first in sequence
3: for i ← 1, p− 2 do
4: si ← (s2

i−1 − 2) mod Mp

5: end for
6: return TRUE if sp−2 = 0, else FALSE

7: end procedure

by Schönhage and Strassen (1971) [2], reducing the computa-
tional complexity to O(p log p log log p). It is well-known that
fast parallel-reductions can be done for associative operations
on vector elements; such parallel-prefix operations can be used
in parallel carry-adders for carry propagation (see Ladner and
Fischer [3], Balakrishnan and Nandy [4]). This enables O(log p)

parallel additions including carries on a machine storing one
radix-digit at each of p processors. Combining the Schönhage-
Strassen method with parallel carry-addition makes possible
Alg. 2.

Algorithm 2 A Vector-Parallel Lucas-Lehmer Test

Require: p > 2, a prime number for which Mp , 2p − 1 is the
Mersenne number to be tested

Require: n is the smallest power-of-two such that 2p < n

Require: X and Y are complex arrays of length n

1: procedure VECTOR-PARALLEL-LUCAS-LEHMER-TEST(p)
2: X[0] ← 4 . Initialize first in sequence
3: for i ← 1, p− 2 do
4: Y ← F(X)

5: X ← Y · Y, componentwise vector product
6: Y ← F−1(X)

7: X ← Y + (FFFF . . . FFFE)n
8: Y ← reduce-carrysave-to-carryadd(X)

9: X ← parallel-prefix-carry(Y )

10: Y ← Xlow-order + (Xhigh-order >> p)

11: X ← parallel-prefix-carry(Y )

12: Y ← Xlow-order + (Xhigh-order >> p)

13: X ← parallel-prefix-carry(Y )

14: end for
15: return TRUE if X = 0 mod Mp, else FALSE

16: end procedure

Step 7 deterministically performs the subtraction-by-two using
the equivalent operation Y −2 = Y +(2n−2) modulo 2n. This is
O(1) in the carry-save representation. Step 8 reduces the carry-

Tech. Rep. CIM-007-02 c© July 2007 A. Thall



FOR PUBLICATION 2

save configuration to one with a single possible one-bit carry
per byte. Steps 10 and 11, repeated twice, effect the reduction
modulo 2p−1 by shifting and adding the high-order p bits to the
low-order p bits. Of these operations, the DFT-based multiplies
and the carry-adds both have time complexity O(lg p), giving this
implementation a theoretical time-complexity ≈ O(p lg p).

This paper will provide the details required to efficiently
implement the described algorithm on current GPU hardware.

II. GPU IMPLEMENTATION OF THE PARALLEL

LUCAS-LEHMER TEST

The ideal asymptotic complexity of the parallel test is qualified
by a number of factors: (a) the operation-count is no longer in
terms of CPU clock cycles but in terms of the GPU frame-rate,
which is a million times slower; (b) because a GPU does not
actually have a processor per pixel,execution-time per operation is
not constant but is a step-function of the size of the images used
for the convolutions. Since the basic operation—the rendering
of a single frame—is GPU-compute-bound, as the convolution-
size increases by multiples of two, the compute time increases
proportionally. Despite this, current GPU hardware can run this
algorithm at comparable speeds to current sequential implemen-
tations (see Results below), and the algorithm scales transparently
as more powerful GPUs are made available.

To implement the parallel Lucas-Lehmer test on the GPU—
specifically, on nVidia G70 and G80-based processors—one must
address the following GPU issues:

A) Extended-precision computation;
B) Fast Fourier transformations;
C) Reducing carry-save to carry-add configurations;
D) Fast carry-adds, including subtraction by 2;
E) Reduction of products modulo Mp.

The current implementation takes a naı̈ve approach to the Lucas-
Lehmer test, representing the numbers in the spatial domain as
arrays of 8-bit binary “digits”. More sophisticated approaches,
as described in Crandall and Pomerance [5] (Ch. 9) can in-
volve balanced-radix representations, irrational numerical bases,
and products modulo 2n − 1, affording constant-factor—albeit
considerable—speedups over the naı̈ve approach.

A. Extended-Precision Computation

Because a radix-256 number of length N can create fre-
quency components on the order of (2562N), we require at
least log2 2562N = 16 + log2 N bits of floating-point precision,
as well as additional bits to prevent roundoff error (Press et
al. [6], p. 918). Current GPUs offer at most a single-precision
floating point number with a 24 bit (normalized) mantissa, which
is insufficient for the large Mersenne numbers of interest here.
Therefore it has been necessary to use extended-precision soft-
ware to emulate higher-precision float.

Techniques for performing extended-precision arithmetic in
software using pairs of machine-precision numbers have a long
history: Dekker [7], Wyatt [8], and Brent [9], [10] all did extended
precision research prior to the IEEE 754 standard. Priest [11] in
1992 did a full study of extended-precision requirements under the
IEEE 754 standard; this provided the theoretical underpinnings
for the doubledoubles of Briggs [12] and quad-doubles of Hida
et al [13]. The use and hazards of double- and quad-precision
numerical types is discussed by Li et al [14].

On the GPU, preliminary exploration of the feasibility and
error-characteristics of GPU double-floats has been done using
the Cg language by Meredith and Bremer [15] and the Brook
language by Da Graça and Defour [16]. Thall [17] implemented
full mathematical libraries for double-float and quad-float (hence-
forth, df64 and qf128) computation. This library code was used
in the current work to achieve the necessary numerical precision
in the frequency components of the Fourier transforms.

As implemented in the Cg language and based on each image
pixel storing four single-precision floating point values, a pixel
can therefore store two df64 numbers. In the current implementa-
tion, these are precisely the df64 real and imaginary components
of the complex array elements. Double-floats offer nearly 48-bits
of precision in each “primitive”; this is sufficient for convolution
products of 8-bit “digits” but is just shy of the number needed
for 16-bit values.

B. A GPU Implementation of the Fast Fourier Transform in df64

A discrete Fourier transform is a linear transformation of a
complex vector:

F(x̄) = Wx̄

where, for complex x̄ of length n, Wkj = ωkj
n , for

ωn = cos(2π/n)− i sin(2π/n)

= exp(−2πi/n).

“Fast” versions of the DFT allow the matrix product to be
computed in O(n log n) operations rather than O(n2), and play
pivotal roles in signal processing and data analysis.

A general discussion of FFTs on GPU hardware can be found in
Moreland et al. [18]. The GAMMA group at UNC-Chapel Hill has
released the GPUFFTW library for single-precision FFTs on real
and complex input. The libraries for the CUDA language from
nVidia also provide implementations of single-precision FFTs on
the GPU.

The implementation chosen for this work uses a transposed
Stockham autosort framework for the FFT; a discussion such
methods is found in Van Loan [19]. The Stockham autosort
methods avoid bit-reversal rearrangement of the data at the cost of
a temporary storage array (necessary for a GPU-based algorithm
in any case) and a varying index scheme for each of the ln n

iterations. The GAMMA group at UNC employ such a framework
in their GPUFFTW library.

C. Fast carry-adds and modular reduction on the GPU

Implementation of the Lucas-Lehmer test with parallel Fourier-
based multiplication but sequential carry-add and modular reduc-
tion operations has shown that a substantial amount of time is
spent in the sequential operation, especially in the readout of the
product to CPU memory. As an example, for p = 23, 209, over
two-thirds of the computation time was spent in the carry-add
and modular-reduction phases; of this fraction, only 15% of the
time was spent on the (O(n)) carry-adds and modular reductions,
while the other 85% was the cost of the writes and readbacks
between CPU and GPU. For a p = 86, 243 trial with a 256× 256

texture, the sequential code was 87% of the (3021 sec) runtime.
If the carry-adds and modular-reductions can be done on the

GPU, the transfer times to and from the CPU can be eliminated,
and the carry-adds and modular reductions reduced to O(log n)



FOR PUBLICATION 3

operations. Although n is now bound by the frame-rate, rather
than the FLOPS/sec of the CPU, the big win is in the elimination
of the transfer times.

1) Fast parallel carry-addition and subtraction algorithms and
implementations: An O(log n) fast carry-add can be performed
over n bytes stored 1-per-processor on a vector-based architecture
by means of a parallel prefix sum computation (see Ladner [3],
also Berman and Paul [20], p. 378). It is straightforward to adapt
such a framework to the GPU, which behaves functionally as
though it has a processor per pixel.

The convolution product, returned to the spatial domain, is
rounded to a radix-256 integer in a carry-save configuration, with
digits not restricted to be ≤ 255. While in the carry-save state,
we can subtract 2 modulo 2n by simply adding 255 to each digit
except the lowest order, to which we add 254. This is an O(1)

operation on the vector-array. It is then necessary to reduce the
carry-save configuration to a carry-add configuration, summing
higher order bits from each digit into higher order bits to leave
at most a single bit to be carried from each digit. This reduction
depends on the maximum size of the convolution product and can
be done in m/8− 1 parallel-additions, where m is the maximum
number of bits in the product.

Once in a carry-add configuration, a prefix-sum algorithm can
be used to propagate the carries in O(lg n) time.

2) Fast parallel modular reduction on the GPU: Given fast
parallel addition-with-carry, modular reduction mod 2p − 1 can
be implemented by left-shifting the high-order p bits of a 2p-bit
product by p and then adding the low-order p bits. If there is a
carry-out of the pth bit of this sum, the value added to the lowest
order term and any carry propagated once again.

III. RESULTS AND DISCUSSION

A. Performance

[Results omitted. See implementation issues below.]

B. Implementation Issues

The code currently does fast-carry-adds on the GPU; because
this is a linear sequential operation, it is architecture-dependent
whether, for problem-sizes n of interest, the cost the frame-
rate-based O(lg n) operations on the GPU will be less than the
CPU-clock-rate-based O(n) operations on the CPU. The cost of
transferring the texture-data to and from the graphics card for
each frame must be factored into the process. Thus, bus speeds
and memory transfer rates make the problem highly dependent
on details of both GPU and CPU system configurations.

Many obvious optimizations of the parallel routines were not
done. (1) A factor of two reduction in the texture-size is attainable
using standard methods for doing Fourier transforms of real-
valued data by rearrangement of the data into a complex-valued
array of half-the size. (2) The current implementation uses only
even powers-of-two for the convolution arrays, using only square
textures for storage. A trivial change to non-square textures would
improve runtimes by a factor of two for values of Mp only
requiring twice the space of a previous Mp−1 but currently using
four times as much. (3) The subtraction of two from the low-
order byte seldom involves a “borrow” from a higher-order byte;
the parallel carry-add of 2p−2 might be done only rarely, with a
single read-back from and write to the low-order byte being used

more often. (4) Similarly, the second iteration of the shift-and-
carry-add for the modular remainder operation is only necessary
if there is a carry out from the pth bit of the array after the first
shift-and-carry-add; this could be checked with the read-back of a
single byte and the costly second iteration done only as necessary.

These and similar optimizations would be desirable before
using such code for serious Mersenne prime hunting.

C. Future Evolution of the GPU as a Platform for High-Precision
Numerical Computation

The next generation of GPUs (see NVidia announcements)
will have support for d64 double-precision variables. This will
eliminate the need for df64 numbers for intermediate range values;
for larger arbitrary precision numbers, it is likely that double-
double and quad-double primitives will be immediately usable
based on the current df64 and qf128 implementations. With higher
precision primitives and larger texture memories, GPUs will prove
to be very powerful platforms for high-precision computations.
The availability of double-precision without emulation will also
allow the use of tools such as Nvidia’s CUDA language to greatly
simplify the programming of such applications.

The use of CUDA would also avoid the OpenGL graphics-
oriented API; studies of parallel-prefix operations by Harris et
al [21] show an up-to-7-fold speedup of CUDA-based parallel-
prefix operations over OpenGL-based implementations on the
same hardware. Factors contributing to this are given as on-
chip shared memory, thread synchronization functionality, and the
ability to do scatter-writes to memory. All of these factors should
translate directly to similar speedups in the parallel Lucas-Lehmer
test.

[Note: as of 2009, IEEE-compliant double-precision arithmetic
is available on commercial GPUs, accessible (on NVidia cards)
using CUDA kernels but not exposed in the graphics pipeline
in such systems as Cg. Use of double-precision would allow
much greater efficiency than the double-float emulation used
in this study; use of CUDA kernels in place of Cg shaders
would likewise boost efficiency, perhaps to the point where GPU
methods could equal or surpass the performance of the highly
optimized sequential algorithms used by GIMPS.]

ACKNOWLEDGMENT

The author would like to thank Dr. Dinesh Manocha and
his colleagues in UNC’s GAMMA group for their GPUFFTW
work. Thanks to Bob Silverman for correspondence and for fast
sequential code for the Lucas-Lehmer test. Thanks also to Dr. Jan
Prins at UNC-Chapel Hill for a critique of early ideas regarding
parallel Lucas-Lehmer testing in 1995.



FOR PUBLICATION 4

REFERENCES

[1] Website, “GIMPS: The Great Mersenne Prime Search,” http://www.
mersenne.org/prime.htm, 2007.

[2] A. Schönhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,”
Computing, vol. 7, pp. 281–292, 1971.

[3] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, 1980.

[4] S. Balakrishnan and S. K. Nandy, “Arbitrary precision arithmetic—
SIMD style,” in VLSID ’98: Proceedings of the Eleventh International
Conference on VLSI Design: VLSI for Signal Processing. Washington,
DC, USA: IEEE Computer Society, 1998, p. 128.

[5] R. Crandall and C. Pomerance, Prime Numbers: A Computational
Perspective, 2nd ed. Springer, 2005.

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge University Press, 1992.

[7] T. J. Dekker, “A floating point technique for extending the available
precision,” Numerische Mathematik, vol. 18, pp. 224–242, 1971.

[8] W. T. Wyatt, Jr., D. W. Lozier, and D. J. Orser, “A portable extended
precision arithmetic package and library with fortran precompiler,” ACM
Trans. Math. Softw., vol. 2, no. 3, pp. 209–231, 1976.

[9] R. P. Brent, “A FORTRAN multiple-precision arithmetic package,” ACM
Trans. on Math. Software, vol. 4, no. 1, pp. 57–70, March 1978.

[10] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,”
IEEE Transactions on Computers, vol. 31, no. 3, pp. 260–264, 1982.
[Online]. Available: citeseer.ist.psu.edu/brent82regular.html

[11] D. M. Priest, “On properties of floating point arithmetics: Numerical
stability and the cost of accurate computations,” Ph.D. dissertation,
University of California, Berkeley, 1992.

[12] K. Briggs, “Doubledouble floating point arithmetic,” http://keithbriggs.
info/doubledouble.html, Tech. Rep., 1998.

[13] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-
double precision floating point arithmetic,” in Proceedings of the
15th Symposium on Computer Arithmetic (ARITH ’01), N. Burgess
and L. Ciminiera, Eds. Washington, DC: IEEE Computer Society,
2001, pp. 155–162. [Online]. Available: http://citeseer.ist.psu.edu/
hida01algorithms.html

[14] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar,
W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson, T. Tung,
and D. J. Yoo, “Design, implementation and testing of extended and
mixed precision BLAS,” ACM Trans. Math. Softw., vol. 28, no. 2, pp.
152–205, 2002.

[15] J. Meredith, D. Bremer, L. Flath, J. Johnson, H. Jones, S. Vaidya,
and R. Frank, “The GAIA Project: evaluation of GPU-based program-
ming environments for knowledge discovery,” Presentation, HPEC ’04,
Boston, MA, 2004.

[16] G. Da Graça and D. Defour, “Implementation of float-float operators on
graphics hardware,” preprint, may 2006.

[17] A. L. Thall, “Extended-precision floating-point numbers for GPU com-
putation,” Poster Session, ACM SIGGRAPH ’06 Annual Conference,
Boston, MA, August 2006.

[18] K. Moreland and E. Angel, “The FFT on a GPU,” in Graphics Hardware
2003, M. Doggett, W. Heidrich, W. Mark, and A. Schilling, Eds.
Eurographics, 2003.

[19] C. van Loan, Computational Frameworks for the Fast Fourier Transform,
ser. Frontiers in Applied Mathematics. SIAM, 1992, Another wonderful
book from Charlie van Loan. Let’s send this guy lots of money.

[20] K. A. Berman and J. L. Paul, Fundamentals of Sequential and Parallel
Algorithms. PWS Publishing Company, 1996.

[21] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan)
with CUDA,” in GPU Gems 3, H. Nguyen, Ed. Addison-Wesley, 2007,
pp. 851–876.

Andrew Thall is Assistant Professor of Mathematics
and Computer Science at Alma College. He received
his Ph.D. (2004) in Computer Science from the
University of North Carolina at Chapel Hill, where
his main areas of research were in medical-image
analysis and medial-based geometric surface model-
ing. His current research interests include numerical
computation, GPGPU, and computer science educa-
tion.


